Oracle开发之分析函数(Rank, Dense_rank, row_number)
一、使用rownum为记录排名:在前面一篇《》,我们认识了分析函数的基本应用,现在我们再来考虑下面几个问题:
②按区域和客户订单总额进行排名 按照前面第一篇文章的思路,我们只能做到对各个分组的数据进行统计,如果需要排名的话那么只需要简单地加上rownum不就行了吗?事实情况是否如此想象般简单,我们来实践一下。 【1】测试环境: 代码如下: desc user_order; Name Null? Type 【2】测试数据: 代码如下: select * from user_order order by customer_sales; REGION_ID CUSTOMER_ID CUSTOMER_SALES 30 rows selected. 注意这里有3条记录的订单总额是一样的。假如我们现在需要筛选排名前12位的客户,如果使用rownum会有什么样的后果呢? 代码如下: select rownum,t.* ROWNUM REGION_ID CUSTOMER_ID CUSTOMER_SALES 12 rows selected. 很明显假如只是简单地按rownum进行排序的话,我们漏掉了另外两条记录(参考上面的结果)。 二、使用分析函数来为记录排名:针对上面的情况,Oracle从8i开始就提供了3个分析函数:rand,dense_rank,row_number来解决诸如此类的问题,下面我们来看看这3个分析函数的作用以及彼此之间的区别: Rank,Dense_rank,Row_number函数为每条记录产生一个从1开始至N的自然数,N的值可能小于等于记录的总数。这3个函数的唯一区别在于当碰到相同数据时的排名策略。 Row_number函数返回一个唯一的值,当碰到相同数据时,排名按照记录集中记录的顺序依次递增。
这样的介绍有点难懂,我们还是通过实例来说明吧,下面的例子演示了3个不同函数在遇到相同数据时不同排名策略: 代码如下: select region_id,customer_id,sum(customer_sales) total, REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROW_NUMBER 30 rows selected. 请注意上面的绿色高亮部分,这里生动的演示了3种不同的排名策略:①对于第一条相同的记录,3种函数的排名都是一样的:12 ②当出现第二条相同的记录时,Rank和Dense_rank依然给出同样的排名12;而row_number则顺延递增为13,依次类推至第三条相同的记录 ③当排名进行到下一条不同的记录时,可以看到Rank函数在12和15之间空出了13,14的排名,因为这2个排名实际上已经被第二、三条相同的记录占了。而Dense_rank则顺序递增。row_number函数也是顺序递增 比较上面3种不同的策略,我们在选择的时候就要根据客户的需求来定夺了:三、使用分析函数为记录进行分组排名:上面的排名是按订单总额来进行排列的,现在跟进一步:假如是为各个地区的订单总额进行排名呢?这意味着又多了一次分组操作:对记录按地区分组然后进行排名。幸亏Oracle也提供了这样的支持,我们所要做的仅仅是在over函数中order by的前面增加一个分组子句:partition by region_id。 代码如下: select region_id, REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROW_NUMBER 30 rows selected. 现在我们看到的排名将是基于各个地区的,而非所有区域的了!Partition by 子句在排列函数中的作用是将一个结果集划分成几个部分,这样排列函数就能够应用于这各个子集。 前面我们提到的5个问题已经解决了2个了(第1,2),剩下的3个问题(Top/Bottom N,First/Last,NTile)会在下一篇讲解。 以上就是Oracle中Rank,Dense_rank,row_number各个函数用法的全部内容,希望能给大家一个参考,也希望大家多多支持脚本之家。 (编辑:4S站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |